\qquad
\qquad
\qquad

Reteaching (continued)

Simplifying Rational Expressions

Exercises

Simplify each expression. State any excluded values.

1. $\frac{a^{4}}{a} a^{3}, a \neq 0$
2. $\frac{4 x^{3}}{16 x^{2}} \quad \frac{x}{4} ; x \neq 0$
3. $\frac{c d^{2}}{3 c^{2} d} \frac{d}{3 c^{\prime}} ; d \neq 0, c \neq 0$
4. $\frac{l m}{l^{2} m^{2} n}$
5. $\frac{64 y}{16 y^{2} x} \quad \frac{4}{x y} ; x \neq 0, y \neq 0$
6. $\frac{2 x^{2}-4 x}{x} 2 x-4 ; x \neq 0$
$\frac{1}{I m n} ; I \neq 0, m \neq 0, n \neq 0$
7. $\frac{5 x^{3}-15 x^{2}}{x-3} \quad 5 x^{2} ; x \neq 3$
8. $\frac{x^{2}+5 x+6}{x+3} \quad x+2 ; x \neq-3$
9. $\frac{2 b+4}{4} \frac{b+2}{2}$
10. $\frac{3 a+15}{15} \frac{a+5}{5}$
11. $\frac{3 p-21}{18} \frac{p-7}{6}$
12. $\frac{4}{4 y-8} \frac{1}{y-2} ; y \neq 2$
13. $\frac{7 z-28}{14 z} \frac{z-4}{2 z} ; z \neq 0$
14. $\frac{9}{18-81 a} \frac{1}{2-9 a} ; a \neq \frac{2}{9}$
15. $\frac{5}{35-5 c} \frac{1}{7-c} ; c \neq 7$
16. $\frac{2 q+2}{q^{2}+4 q+3} \frac{2}{q+3} ; q \neq-3$ or -1
17. $\frac{a+2}{a^{2}+4 a+4} \frac{1}{a+2} ; a \neq-2$
18. $\frac{2 x-2}{2-2 x}-1 ; x \neq 1$
19. $\frac{9-x^{2}}{x-3}-x-3, x \neq 3$
20. $\frac{2 a+4}{2} a+2$

Write the opposite expression and simplify the opposite expression.
21. $\frac{10 b^{5}}{40 b^{4}}-\frac{10 b^{5}}{40 b^{4}} ;-\frac{b}{4}, b \neq 0$
22. $\frac{36-z^{2}}{4 z-24} \frac{z^{2}-36}{4 z-24} ; \frac{z+6}{4}, z \neq 6$
23. $\frac{x^{2}-16}{x-4} \frac{-x^{2}+16}{x-4} ;-x-4, x \neq 4$
24. $\frac{30+2 z}{14+4 z} \frac{-(30+2 z)}{14+4 z} ; \frac{-15-z}{7+2 z}, z \neq 3.5$
\qquad
\qquad
\qquad

Reteaching

Multiplying and Dividing Rational Expressions

There are many types of complex fractions.
A complex fraction can be a fraction with one or more additional fractions in the numerator, or in the denominator, or in both the numerator and the denominator.

Problem

Is $\frac{5 x^{3}}{\frac{6 x^{2}}{x+1}}$ a complex fraction? Explain.

Solve

Ask: Is the numerator a fraction? $\quad \rightarrow \quad$ No. $5 x^{3}$ is not a fraction.
Ask: Is the denominator a fraction? \rightarrow Yes. $\frac{6 x^{2}}{x+1}$ is a fraction.
A fraction is in the denominator $\rightarrow \frac{5 x^{3}}{\frac{6 x^{2}}{x+1}}$ is a complex fraction.

Exercises

Tell if the following terms are complex fractions. Explain your reasoning.
$\frac{4 y}{\frac{5}{5}}$ yes; It has a fraction
in the numerator and
$\frac{9}{2 y}$ the denominator.
no; It does not have
2. $\frac{2}{3+8 z}$ a fraction in the numerator or the denominator.
3. $\frac{1}{x+2}$
yes; It has a fraction in the numerator.
4. $\frac{\frac{2 x}{3}}{5 x}$ yes; It has a fraction
5. $\frac{\frac{3 x^{2}}{x+8}}{x^{3}}$ yes; It has a fraction
6. $\frac{\frac{4 x+9}{2 x+8}}{\frac{5 x-6}{3 x+7}}$
yes; It has a
7. $\frac{x-2}{x+4} \begin{aligned} & \text { yes; It has a } \\ & \text { fraction in the } \\ & \text { numerator. }\end{aligned}$
8. $\frac{2}{2}$ yes; It has a fraction
$\frac{x}{x}$ in the numerator and
$\frac{x}{5}$ the denominator.
9. $\frac{\frac{13 x^{2}}{x+2}}{\frac{4 x^{3}}{x+16}}$
yes; It has a fraction in the the denominator.
\qquad
\qquad Date \qquad

Reteaching (continued)

Multiplying and Dividing Rational Expressions

Simplifying Complex Fractions

You can use the Outers Over Inners method to simplify complex fractions.
The Outers Over Inners method sets up a simplified fraction that looks like this:

$$
\frac{\text { Product of Outers }}{\text { Product of Inners }} \rightarrow \frac{\text { Outers }}{\text { Inners }}=\frac{A D}{B C}
$$

For example, in the fraction: $\frac{\frac{6 y}{5}}{\frac{2}{4 y}} 6 y$ and $4 y$ are

the "outer" terms; 5 and 2 are the "inner" terms.

If a numerator or denominator is not a fraction, make it a fraction by rewriting it as polynomial

1 .

Problem

Simplify $\frac{\frac{6 y}{5}}{\frac{2}{4 y}}$.
Solve

$$
\frac{\text { Outers }}{\text { Inners }}=\frac{(6 y)(4 y)}{(5)(2)}=\frac{24 y^{2}}{10}
$$

Check Rewrite as numerator divided by denominator. $\frac{6 y}{5} \div \frac{2}{4 y}$

$$
\text { Rewrite as a multiplication problem. } \quad \frac{6 y}{5} \times \frac{4 y}{2}=\frac{24 y^{2}}{10}
$$

Exercises

Simplify using the Outers Over Inners method.
10. $\frac{\frac{(g+4)}{2}}{g} \frac{(g+4)}{2 g}$
11. $\frac{\frac{(x+1)}{2}}{\frac{x}{3}} \frac{3(x+1)}{2 x}$
\qquad
\qquad
\qquad

Reteaching (continued)

Adding and Subtracting Rational Expressions

Exercises

Add.

1. $\frac{4}{p}+\frac{9}{p} \frac{13}{p}$
2. $\frac{2.5}{x}+\frac{1.25}{x} \frac{3.75}{x}$
3. $\frac{2 y}{x^{2} y^{2}}+\frac{x^{2}}{x^{2} y^{2}} \frac{x^{2}+2 y}{x^{2} y^{2}}$
4. $\frac{j^{2}}{j m^{2} n}+\frac{3 m}{j m^{2} n}+\frac{2 n^{3}}{j m^{2} n} \frac{j^{2}+3 m+2 n^{3}}{j m^{2} n}$
5. $\frac{1}{2 a}+\frac{2}{a} \frac{5}{2 a}$
6. $\frac{7}{3 d}+\frac{3}{7 d} \frac{58}{21 d}$
7. $\frac{1}{12 m}+\frac{3}{4 m} \frac{5}{6 m}$
8. $\frac{3}{7 s}+\frac{11}{4 s} \frac{89}{28 s}$
9. $\frac{8.9}{16 t}+\frac{2.1}{9 t} \frac{113.7}{144 t}$
10. $\frac{5}{x}+\frac{x}{x^{2}} \frac{6}{x}$
11. $\frac{3}{n+1}+\frac{4}{n+2} \frac{7 n+10}{(n+1)(n+2)}$
12. $\frac{2 x}{x^{2}-9}+\frac{4 x+1}{x+3} \frac{4 x^{2}-9 x-3}{x^{2}-9}$

Subtract.

13. $\frac{2}{y}-\frac{5}{3 y} \frac{1}{3 y}$
14. $\frac{1}{2 x}-\frac{1}{3 x} \frac{1}{6 x}$
15. $\frac{n-1}{2}-\frac{2 n}{4}-\frac{1}{2}$
16. $\frac{3}{7 y}-\frac{6}{3 y} \frac{-11}{7 y}$
17. $\frac{11}{2 p}-\frac{1}{12 p} \frac{65}{12 p}$
18. $\frac{4}{x+2}-\frac{2}{x-8} \frac{2 x-36}{x^{2}-6 x-16}$
19. $\frac{10}{x+5}-\frac{x+1}{2 x} \frac{-x^{2}+14 x-5}{2 x(x+5)}$
20. $\frac{3 x}{2}-\frac{x}{14 x} \frac{(21 x-1)}{14}$
21. $\frac{4}{x+2}-2(x-2) \frac{-2 x^{2}+12}{x+2}$
22. $\frac{5 k}{2}-\frac{6}{k} \frac{5 k^{2}-12}{2 k}$
\qquad Class \qquad Date \qquad

Reteaching

Inverse Variation

The flowchart below shows how to decide whether a relationship between two variables is a direct variation, inverse variation, or neither.

Problem

Do the data in the table represent a direct variation, inverse variation, or neither?

x	1	2	4	5
y	20	10	5	4

As the value of x increases, the value of y decreases, so test the table values in the inverse variation model: $x y=k: 1 \cdot 20=20,2 \cdot 10=20,4 \cdot 5=20$, $5 \cdot 4=20$. Each product equals the same value, 20 , so the data in the table model an inverse variation.

Exercises

Do the data in the table represent a direct variation, inverse variation, or neither?
1.

direct variation

inverse variation
\qquad
\qquad

Reteaching (continued)

Inverse Variation

To solve problems involving inverse variation, you need to solve for the constant of variation k before you can find an answer.

Problem

The time t that is necessary to complete a task varies inversely as the number of people p working. If it takes 4 h for 12 people to paint the exterior of a house, how long does it take for 3 people to do the same job?

$$
\begin{array}{rlrl}
t & =\frac{k}{p} & \begin{array}{ll}
\text { Write an inverse variation. Because time is dependent on people, } t \text { is the dependent variable } \\
\text { and } p \text { is the independent variable. }
\end{array} \\
4 & =\frac{k}{12} & & \text { Substitute } 4 \text { for } t \text { and } 12 \text { for } p .
\end{array}
$$

It takes 3 people 16 h to paint the exterior of the house.

Exercises

3. The time t needed to complete a task varies inversely as the number of people p. It takes 5 h for seven men to install a new roof. How long does it take ten men to complete the job? 3.5 h
4. The time t needed to drive a certain distance varies inversely as the speed r. It takes 7.5 h at $40 \mathrm{mi} / \mathrm{h}$ to drive a certain distance. How long does it take to drive the same distance at $60 \mathrm{mi} / \mathrm{h}$? 5 h
5. The cost of each item bought is inversely proportional to the number of items when spending a fixed amount. When 42 items are bought, each costs $\$ 1.46$. Find the number of items when each costs $\$ 2.16$. about 28 items
6. The length l of a rectangle of a certain area varies inversely as the width w. The length of a rectangle is 9 cm when the width is 6 cm . Determine the length if the width is 8 cm .6 .75 cm
\qquad
\qquad Date \qquad

Reteaching

The Reciprocal Function Family

A Reciprocal Function in

General Form
The general form is $y=\frac{a}{x-h}+k$, where $a \neq 0$ and $x \neq h$.

The graph of this equation has a horizontal asymptote at $y=k$ and a vertical asymptote at $x=h$.

Two Members of the Reciprocal Function Family

When $a \neq 1, h=0$, and $k=0$, you get the inverse variation function, $y=\frac{a}{x}$.

When $a=1, h=0$, and $k=0$, you get the parent reciprocal function, $y=\frac{1}{x}$.

Problem

What is the graph of the inverse variation function $y=\frac{-5}{x}$?

Step 1 Rewrite in general form and identify a, h, and k.

$$
y=\frac{-5}{x-0}+0 \quad a=-5, h=0, k=0
$$

Step 2 Identify and graph the horizontal horizontal asymptote: $y=k$ and vertical asymptotes.

$$
y=0
$$

$$
\text { vertical asymptote: } \quad x=h
$$

$$
x=0
$$

Step 3 Make a table of values for $y=\frac{-5}{x}$. Plot the points and then connect the points in each quadrant to make a curve.

x	-5	-2.5	-1	1	2.5	5
y	1	2	5	-5	-2	-1

Exercises

Graph each function. Include the asymptotes.

1. $y=\frac{9}{x}$

2. $y=-\frac{4}{x}$

3. $x y=2$

\qquad Class \qquad Date \qquad

Reteaching (continued)

The Reciprocal Function Family

A reciprocal function in the form $y=\frac{a}{x-h}+k$ is a translation of the inverse variation function $y=\frac{a}{x}$. The translation is h units horizontally and k units vertically. The translated graph has asymptotes at $x=h$ and $y=k$.

Problem

What is the graph of the reciprocal function $y=-\frac{6}{x+3}+2$?

Step 1 Rewrite in general form and identify a, h, and k.

$$
y=\frac{-6}{x-(-3)}+2 \quad a=-6, h=-3, k=2
$$

Step 2 Identify and graph the horizontal horizontal asymptote: $y=k$ and vertical asymptotes.

$$
y=2
$$

$$
\text { vertical asymptote: } \quad x=h
$$

$$
x=-3
$$

Step 3 Make a table of values for $y=\frac{-6}{x}$, then translate each (x, y) pair to $(x+h, y+k)$. Plot the translated points and connect the points in each quadrant to make a curve.

\boldsymbol{x}	-6	-3	-2	2	3	6
\boldsymbol{y}	1	2	3	-3	-2	-1
$\boldsymbol{x}+(-3)$	-9	-6	-5	-1	0	3
$\boldsymbol{y}+\mathbf{2}$	3	4	5	-1	0	1

Exercises

Graph each function. Include the asymptotes.
4. $y=\frac{3}{x-2}-4$

5. $y=-\frac{4}{x-8}$

6. $y=\frac{2}{3 x}+\frac{3}{2}$

\qquad
\qquad Date \qquad

Reteaching

Rational Functions and Their Graphs

A rational function may have one or more types of discontinuities: holes (removable points of discontinuity), vertical asymptotes (non-removable points of discontinuity), or a horizontal asymptote.

If	Then	Example
a is a zero with multiplicity m in the numerator and multiplicity n in the denominator, and $m \geq n$	hole at $x=a$	$f(x)=\frac{(x-5)(x+6)}{(x-5)}$ hole at $x=5$
a is a zero of the denominator only, or a is a zero with multiplicity m in the numerator and multiplicity n in the denominator, and $m<n$	vertical asymptote at $x=a$	$f(x)=\frac{x^{2}}{x-3}$

Let $p=$ degree of numerator.
Let $q=$ degree of denominator.

- $p<q$	horizontal asymptote at $y=0$	$f(x)=\frac{4 x^{2}}{7 x^{2}+2}$
- $p>q$	no horizontal asymptote exists	

Problem

What are the points of discontinuity of $y=\frac{x^{2}+x-6}{3 x^{2}-12}$, if any?
Step 1 Factor the numerator and denominator completely. $y=\frac{(x-2)(x+3)}{3(x-2)(x+2)}$
Step 2 Look for values that are zeros of both the numerator and the denominator. The function has a hole at $x=2$.

Step 3 Look for values that are zeros of the denominator only. The function has a vertical asymptote at $x=-2$.
Step 4 Compare the degrees of the numerator and denominator. They have the same degree. The function has a horizontal asymptote at $y=\frac{1}{3}$.

Exercises

Find the vertical asymptotes, holes, and horizontal asymptote for the graph of

each rational function.

vertical asymptotes: $x=3, x=-3$;

1. $y=\frac{x}{x^{2}-9}$
2. $y=\frac{6 x^{2}-6}{x-1}$
horizontal asymptote:
\qquad Class \qquad Date \qquad

Reteaching (continued)

Rational Functions and Their Graphs

Before you try to sketch the graph of a rational function, get an idea of its general shape by identifying the graph's holes, asymptotes, and intercepts.

Problem

What is the graph of the rational function $y=\frac{x+3}{x+1}$?
Step 1 Identify any holes or asymptotes.
no holes; vertical asymptote at $x=-1$; horizontal asymptote at $y=\frac{1}{1}=1$
Step 2 Identify any x - and y-intercepts.
x-intercepts occur when $y=0 . y$-intercepts occur when $x=0$.
$\frac{x+3}{x+1}=0$
$y=\frac{0+3}{0+1}$
$x+3=0$
$y=3$
$x=-3$
x-intercept at -3
Step 3 Sketch the asymptotes and intercepts.

Step 4 Make a table of values, plot the points, and sketch the graph.

Exercises

Graph each function. Include the asymptotes.
4. $y=\frac{4}{x^{2}-9}$

5. $y=\frac{x^{2}+2 x-2}{x-1}$

\qquad
\qquad
\qquad

Reteaching

Solving Rational Equations

When one or both sides of a rational equation has a sum or difference, multiply each side of the equation by the LCD to eliminate the fractions.

Problem

What is the solution of the rational equation $\frac{6}{x}+\frac{x}{2}=4$? Check the solutions.

$$
\begin{aligned}
2 x\left(\frac{6}{x}\right)+2 x\left(\frac{x}{2}\right) & =2 x(4) & & \text { Multiply each term on both sides by the LCD, } 2 x . \\
2 x\left(\frac{6}{x}\right)+2 x\left(\frac{x}{2}\right) & =2 x(4) & & \text { Divide out the common factors. } \\
12+x^{2} & =8 x & & \text { Simplify. } \\
x^{2}-8 x+12 & =0 & & \text { Write the equation in standard form. } \\
(x-2)(x-6) & =0 & & \text { Factor. } \\
x-2=0 \text { or } x-6 & =0 & & \text { Use the Zero-Product Property. } \\
x=2 \text { or } x & =6 & & \text { Solve for } x .
\end{aligned}
$$

Check $\quad \frac{6}{x}+\frac{x}{2} \stackrel{?}{=} 4 \quad \frac{6}{x}+\frac{x}{2} \stackrel{?}{=} 4$

$$
\begin{array}{rlrl}
\frac{6}{2}+\frac{2}{2} \stackrel{?}{=} 4 & \frac{6}{6}+\frac{6}{2} \stackrel{?}{=} 4 \\
3+1 \stackrel{?}{=} 4 & 1+3 \stackrel{?}{=} 4 \\
4 & =4 & 4 & =4
\end{array}
$$

The solutions are $x=2$ and $x=6$.

Exercises

Solve each equation. Check the solutions.

1. $\frac{10}{x+3}+\frac{10}{3}=6 \frac{3}{4}$
2. $\frac{1}{x-3}=\frac{x-4}{x^{2}-27} \frac{39}{7}$
3. $\frac{6}{x-1}+\frac{2 x}{x-2}=2 \frac{8}{5}$
4. $\frac{7}{3 x-12}-\frac{1}{x-4}=\frac{2}{3} 6$
5. $\frac{2 x}{5}=\frac{x^{2}-5 x}{5 x}-5$
6. $\frac{8(x-1)}{x^{2}-4}=\frac{4}{x-2} 4$
7. $x+\frac{4}{x}=\frac{25}{6} \quad \frac{3}{2}, \frac{8}{3}$
8. $\frac{2}{x}+\frac{6}{x-1}=\frac{6}{x^{2}-x}$
9. $\frac{2}{x}+\frac{1}{x}=3 \quad 1$ no solution
10. $\frac{4}{x-1}=\frac{5}{x-1}+2 \frac{1}{2}$
11. $\frac{1}{x}=\frac{5}{2 x}+3-\frac{1}{2}$
12. $\frac{x+6}{5}=\frac{2 x-4}{5}-325$
\qquad
\qquad Date \qquad

Reteaching (continued)

Solving Rational Equations

You often can use rational equations to model and solve problems involving rates.

Problem

Quinn can refinish hardwood floors four times as fast as his apprentice, Jack. They are refinishing $100 \mathrm{ft}^{2}$ of flooring. Working together, Quinn and Jack can finish the job in 3 h . How long would it take each of them working alone to refinish the floor?

Let x be Jack's work rate in $\mathrm{ft}^{2} / \mathrm{h}$. Quinn's work rate is four times faster, or $4 x$.
square feet refinished per hour by $\quad=$ square feet of floor \div hours worked
Jack and Quinn together

\[

\]

Jack works at the rate of $6.67 \mathrm{ft}^{2} / \mathrm{h}$. Quinn works at the rate of $26.67 \mathrm{ft}^{2} / \mathrm{h}$.
Let j be the number of hours Jack takes to refinish the floor alone, and let q be the number of hours Quinn takes to refinish the floor alone.

$$
\begin{array}{rlrl}
6.67 & =\frac{100}{j} & 26.67 & =\frac{100}{q} \\
j(6.67) & =j\left(\frac{100}{j}\right) & q(26.67) & =q\left(\frac{100}{q}\right) \\
6.67 j & =100 & 26.67 q & =100 \\
j & \approx 15 & q & \approx 3.75
\end{array}
$$

Jack would take 15 h and Quinn would take 3.75 h to refinish the floor alone.

Exercises

13. An airplane flies from its home airport to a city and back in 5 h flying time. The plane travels the 720 mi to the city at $295 \mathrm{mi} / \mathrm{h}$ with no wind. How strong is the wind on the return flight? Is the wind a headwind or a tailwind? about $14 \mathrm{mi} / \mathrm{h}$; headwind
14. Miguel can complete the decorations for a school dance in 5 days working alone. Nasim can do it alone in 3 days, and Denise can do it alone in 4 days. How long would it take the three students working together to decorate? about 1.3 days
